Cargando…
On the geometric side of the Arthur trace formula for the symplectic group of rank 2
The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank 2 over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2653927 |
_version_ | 1780961077142487040 |
---|---|
author | Hoffmann, Werner Wakatsuki, Satoshi |
author_facet | Hoffmann, Werner Wakatsuki, Satoshi |
author_sort | Hoffmann, Werner |
collection | CERN |
description | The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank 2 over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke L-functions, and the Shintani zeta function for the space of binary quadratic forms. |
id | cern-2653927 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-26539272021-04-21T18:37:08Zhttp://cds.cern.ch/record/2653927engHoffmann, WernerWakatsuki, SatoshiOn the geometric side of the Arthur trace formula for the symplectic group of rank 2Mathematical Physics and MathematicsThe authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank 2 over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke L-functions, and the Shintani zeta function for the space of binary quadratic forms.American Mathematical Societyoai:cds.cern.ch:26539272018 |
spellingShingle | Mathematical Physics and Mathematics Hoffmann, Werner Wakatsuki, Satoshi On the geometric side of the Arthur trace formula for the symplectic group of rank 2 |
title | On the geometric side of the Arthur trace formula for the symplectic group of rank 2 |
title_full | On the geometric side of the Arthur trace formula for the symplectic group of rank 2 |
title_fullStr | On the geometric side of the Arthur trace formula for the symplectic group of rank 2 |
title_full_unstemmed | On the geometric side of the Arthur trace formula for the symplectic group of rank 2 |
title_short | On the geometric side of the Arthur trace formula for the symplectic group of rank 2 |
title_sort | on the geometric side of the arthur trace formula for the symplectic group of rank 2 |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2653927 |
work_keys_str_mv | AT hoffmannwerner onthegeometricsideofthearthurtraceformulaforthesymplecticgroupofrank2 AT wakatsukisatoshi onthegeometricsideofthearthurtraceformulaforthesymplecticgroupofrank2 |