Cargando…
Form factors of two-hadron states from a covariant finite-volume formalism
In this work we develop a Lorentz-covariant version of the previously derived formalism for relating finite-volume matrix elements to 2+J→2 transition amplitudes. We also give various details relevant for the implementation of this formalism in a realistic numerical lattice QCD calculation. Particul...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.100.034511 http://cds.cern.ch/record/2654549 |
Sumario: | In this work we develop a Lorentz-covariant version of the previously derived formalism for relating finite-volume matrix elements to 2+J→2 transition amplitudes. We also give various details relevant for the implementation of this formalism in a realistic numerical lattice QCD calculation. Particular focus is given to the role of single-particle form factors in disentangling finite-volume effects from the triangle diagram that arise when J couples to one of the two hadrons. This also leads to a new finite-volume function, denoted G, the numerical evaluation of which is described in detail. As an example we discuss the determination of the ππ+J→ππ amplitude in the ρ channel, for which the single-pion form factor, Fπ(Q2), as well as the scattering phase, δππ, are required to remove all power-law finite-volume effects. The formalism presented here holds for local currents with arbitrary Lorentz structure, and we give specific examples of insertions with up to two Lorentz indices. |
---|