Cargando…
Longitudinal data analysis: autoregressive linear mixed effects models
This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects...
Autores principales: | Funatogawa, Ikuko, Funatogawa, Takashi |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-981-10-0077-5 http://cds.cern.ch/record/2657865 |
Ejemplares similares
-
Longitudinal analysis of pre‐ and post‐treatment measurements with equal baseline assumptions in randomized trials
por: Funatogawa, Ikuko, et al.
Publicado: (2019) -
Linear mixed models for longitudinal data
por: Molenberghs, Geert, et al.
Publicado: (2000) -
Linear mixed models for longitudinal data
por: Verbeke, Geert, et al.
Publicado: (2000) -
Random coefficient autoregressive models an introduction
por: Nicholls, Des F, et al.
Publicado: (1982) -
Do overweight children necessarily make overweight adults? Repeated cross sectional annual nationwide survey of Japanese girls and women over nearly six decades
por: Funatogawa, Ikuko, et al.
Publicado: (2008)