Cargando…

Journey into discrete mathematics

Journey into Discrete Mathematics is designed for use in a first course in mathematical abstraction for early-career undergraduate mathematics majors. The important ideas of discrete mathematics are included--logic, sets, proof writing, relations, counting, number theory, and graph theory--in a mann...

Descripción completa

Detalles Bibliográficos
Autores principales: Byer, Owen D, Smeltzer, Deirdre L, Wantz, Kenneth L
Lenguaje:eng
Publicado: American Mathematical Society 2018
Materias:
Acceso en línea:http://cds.cern.ch/record/2664589
Descripción
Sumario:Journey into Discrete Mathematics is designed for use in a first course in mathematical abstraction for early-career undergraduate mathematics majors. The important ideas of discrete mathematics are included--logic, sets, proof writing, relations, counting, number theory, and graph theory--in a manner that promotes development of a mathematical mindset and prepares students for further study. While the treatment is designed to prepare the student reader for the mathematics major, the book remains attractive and appealing to students of computer science and other problem-solving disciplines. The exposition is exquisite and engaging and features detailed descriptions of the thought processes that one might follow to attack the problems of mathematics. The problems are appealing and vary widely in depth and difficulty. Careful design of the book helps the student reader learn to think like a mathematician through the exposition and the problems provided. Several of the core topics, including counting, number theory, and graph theory, are visited twice: once in an introductory manner and then again in a later chapter with more advanced concepts and with a deeper perspective. Owen D. Byer and Deirdre L. Smeltzer are both Professors of Mathematics at Eastern Mennonite University. Kenneth L. Wantz is Professor of Mathematics at Regent University. Collectively the authors have specialized expertise and research publications ranging widely over discrete mathematics and have over fifty semesters of combined experience in teaching this subject.