Cargando…
Elliptic polylogarithms and Feynman parameter integrals
In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the e...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2019)120 http://cds.cern.ch/record/2665086 |
_version_ | 1780961925321981952 |
---|---|
author | Broedel, Johannes Duhr, Claude Dulat, Falko Penante, Brenda Tancredi, Lorenzo |
author_facet | Broedel, Johannes Duhr, Claude Dulat, Falko Penante, Brenda Tancredi, Lorenzo |
author_sort | Broedel, Johannes |
collection | CERN |
description | In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. Moreover, we show that in all examples that we considered a basis of pure Feynman integrals can be found. |
id | cern-2665086 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | cern-26650862023-10-04T08:50:01Zdoi:10.1007/JHEP05(2019)120http://cds.cern.ch/record/2665086engBroedel, JohannesDuhr, ClaudeDulat, FalkoPenante, BrendaTancredi, LorenzoElliptic polylogarithms and Feynman parameter integralshep-thParticle Physics - Theoryhep-phParticle Physics - PhenomenologyIn this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. Moreover, we show that in all examples that we considered a basis of pure Feynman integrals can be found.arXiv:1902.09971CP3-19-07CERN-TH-2019-016HU-Mathematik-2019-01HU-EP-19/03, SLAC-PUB-17406HU-EP-19/03, SLAC-PUB-17406oai:cds.cern.ch:26650862019-02-26 |
spellingShingle | hep-th Particle Physics - Theory hep-ph Particle Physics - Phenomenology Broedel, Johannes Duhr, Claude Dulat, Falko Penante, Brenda Tancredi, Lorenzo Elliptic polylogarithms and Feynman parameter integrals |
title | Elliptic polylogarithms and Feynman parameter integrals |
title_full | Elliptic polylogarithms and Feynman parameter integrals |
title_fullStr | Elliptic polylogarithms and Feynman parameter integrals |
title_full_unstemmed | Elliptic polylogarithms and Feynman parameter integrals |
title_short | Elliptic polylogarithms and Feynman parameter integrals |
title_sort | elliptic polylogarithms and feynman parameter integrals |
topic | hep-th Particle Physics - Theory hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1007/JHEP05(2019)120 http://cds.cern.ch/record/2665086 |
work_keys_str_mv | AT broedeljohannes ellipticpolylogarithmsandfeynmanparameterintegrals AT duhrclaude ellipticpolylogarithmsandfeynmanparameterintegrals AT dulatfalko ellipticpolylogarithmsandfeynmanparameterintegrals AT penantebrenda ellipticpolylogarithmsandfeynmanparameterintegrals AT tancredilorenzo ellipticpolylogarithmsandfeynmanparameterintegrals |