Cargando…

Elliptic polylogarithms and Feynman parameter integrals

In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Broedel, Johannes, Duhr, Claude, Dulat, Falko, Penante, Brenda, Tancredi, Lorenzo
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP05(2019)120
http://cds.cern.ch/record/2665086
_version_ 1780961925321981952
author Broedel, Johannes
Duhr, Claude
Dulat, Falko
Penante, Brenda
Tancredi, Lorenzo
author_facet Broedel, Johannes
Duhr, Claude
Dulat, Falko
Penante, Brenda
Tancredi, Lorenzo
author_sort Broedel, Johannes
collection CERN
description In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. Moreover, we show that in all examples that we considered a basis of pure Feynman integrals can be found.
id cern-2665086
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26650862023-10-04T08:50:01Zdoi:10.1007/JHEP05(2019)120http://cds.cern.ch/record/2665086engBroedel, JohannesDuhr, ClaudeDulat, FalkoPenante, BrendaTancredi, LorenzoElliptic polylogarithms and Feynman parameter integralshep-thParticle Physics - Theoryhep-phParticle Physics - PhenomenologyIn this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. Moreover, we show that in all examples that we considered a basis of pure Feynman integrals can be found.arXiv:1902.09971CP3-19-07CERN-TH-2019-016HU-Mathematik-2019-01HU-EP-19/03, SLAC-PUB-17406HU-EP-19/03, SLAC-PUB-17406oai:cds.cern.ch:26650862019-02-26
spellingShingle hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
Broedel, Johannes
Duhr, Claude
Dulat, Falko
Penante, Brenda
Tancredi, Lorenzo
Elliptic polylogarithms and Feynman parameter integrals
title Elliptic polylogarithms and Feynman parameter integrals
title_full Elliptic polylogarithms and Feynman parameter integrals
title_fullStr Elliptic polylogarithms and Feynman parameter integrals
title_full_unstemmed Elliptic polylogarithms and Feynman parameter integrals
title_short Elliptic polylogarithms and Feynman parameter integrals
title_sort elliptic polylogarithms and feynman parameter integrals
topic hep-th
Particle Physics - Theory
hep-ph
Particle Physics - Phenomenology
url https://dx.doi.org/10.1007/JHEP05(2019)120
http://cds.cern.ch/record/2665086
work_keys_str_mv AT broedeljohannes ellipticpolylogarithmsandfeynmanparameterintegrals
AT duhrclaude ellipticpolylogarithmsandfeynmanparameterintegrals
AT dulatfalko ellipticpolylogarithmsandfeynmanparameterintegrals
AT penantebrenda ellipticpolylogarithmsandfeynmanparameterintegrals
AT tancredilorenzo ellipticpolylogarithmsandfeynmanparameterintegrals