Cargando…
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
We explore the use of graph networks to deal with irregular-geometry detectors in the context of particle reconstruction. Thanks to their representation-learning capabilities, graph networks can exploit the full detector granularity, while natively managing the event sparsity and arbitrarily complex...
Autores principales: | Qasim, Shah Rukh, Kieseler, Jan, Iiyama, Yutaro, Pierini, Maurizio |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-019-7113-9 http://cds.cern.ch/record/2666193 |
Ejemplares similares
-
Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters
por: Wunsch, Stefan, et al.
Publicado: (2020) -
Jet Flavour Classification Using DeepJet
por: Bols, Emil, et al.
Publicado: (2020) -
Goodness of fit by Neyman-Pearson testing
por: Grosso, Gaia, et al.
Publicado: (2023) -
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
por: Pata, Joosep, et al.
Publicado: (2021) -
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
por: Aarrestad, Thea, et al.
Publicado: (2021)