Cargando…

Learning representations of irregular particle-detector geometry with distance-weighted graph networks

We explore the use of graph networks to deal with irregular-geometry detectors in the context of particle reconstruction. Thanks to their representation-learning capabilities, graph networks can exploit the full detector granularity, while natively managing the event sparsity and arbitrarily complex...

Descripción completa

Detalles Bibliográficos
Autores principales: Qasim, Shah Rukh, Kieseler, Jan, Iiyama, Yutaro, Pierini, Maurizio
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1140/epjc/s10052-019-7113-9
http://cds.cern.ch/record/2666193