Cargando…
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
We describe the construction of novel end-to-end jet image classifiers to discriminate quark- versus gluon-initiated jets using the simulated CMS Open Data. These multi-detector images correspond to true maps of the low-level energy deposits in the detector, giving the classifiers direct access to t...
Autores principales: | Andrews, M., Alison, J., An, S., Bryant, Patrick, Burkle, B., Gleyzer, S., Narain, M., Paulini, M., Poczos, B., Usai, E. |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2020.164304 http://cds.cern.ch/record/2666540 |
Ejemplares similares
-
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
por: Andrews, M., et al.
Publicado: (2018) -
End-to-End Jet Classification of Boosted Top Quarks with CMS Open Data
por: Andrews, Michael, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022)