Cargando…
Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
We study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP02(2020)094 http://cds.cern.ch/record/2668166 |
Sumario: | We study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator depends on both the one- and two-point functions of the stress-energy tensor. |
---|