Cargando…

Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes

We study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a...

Descripción completa

Detalles Bibliográficos
Autor principal: Jiang, Yunfeng
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP02(2020)094
http://cds.cern.ch/record/2668166
_version_ 1780962158025113600
author Jiang, Yunfeng
author_facet Jiang, Yunfeng
author_sort Jiang, Yunfeng
collection CERN
description We study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator depends on both the one- and two-point functions of the stress-energy tensor.
id cern-2668166
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26681662023-10-04T08:14:07Zdoi:10.1007/JHEP02(2020)094http://cds.cern.ch/record/2668166engJiang, YunfengExpectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimeshep-thParticle Physics - TheoryWe study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator depends on both the one- and two-point functions of the stress-energy tensor.We study the expectation value of the $\mathrm{T}\overline{\mathrm{T}}$ operator in spacetimes with constant curvature. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $\mathrm{T}\overline{\mathrm{T}}$ operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov's result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $\mathrm{T}\overline{\mathrm{T}}$ operator depends on both the one-point and two-point functions of the stress-energy tensor.arXiv:1903.07561CERN-TH-2019-030oai:cds.cern.ch:26681662019-03-18
spellingShingle hep-th
Particle Physics - Theory
Jiang, Yunfeng
Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
title Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
title_full Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
title_fullStr Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
title_full_unstemmed Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
title_short Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
title_sort expectation value of $\mathrm{t}\overline{\mathrm{t}}$ operator in curved spacetimes
topic hep-th
Particle Physics - Theory
url https://dx.doi.org/10.1007/JHEP02(2020)094
http://cds.cern.ch/record/2668166
work_keys_str_mv AT jiangyunfeng expectationvalueofmathrmtoverlinemathrmtoperatorincurvedspacetimes