Cargando…
Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes
We study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP02(2020)094 http://cds.cern.ch/record/2668166 |
_version_ | 1780962158025113600 |
---|---|
author | Jiang, Yunfeng |
author_facet | Jiang, Yunfeng |
author_sort | Jiang, Yunfeng |
collection | CERN |
description | We study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator depends on both the one- and two-point functions of the stress-energy tensor. |
id | cern-2668166 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | cern-26681662023-10-04T08:14:07Zdoi:10.1007/JHEP02(2020)094http://cds.cern.ch/record/2668166engJiang, YunfengExpectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimeshep-thParticle Physics - TheoryWe study the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $ \mathrm{T}\overline{\mathrm{T}} $ operator depends on both the one- and two-point functions of the stress-energy tensor.We study the expectation value of the $\mathrm{T}\overline{\mathrm{T}}$ operator in spacetimes with constant curvature. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the $\mathrm{T}\overline{\mathrm{T}}$ operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov's result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the $\mathrm{T}\overline{\mathrm{T}}$ operator depends on both the one-point and two-point functions of the stress-energy tensor.arXiv:1903.07561CERN-TH-2019-030oai:cds.cern.ch:26681662019-03-18 |
spellingShingle | hep-th Particle Physics - Theory Jiang, Yunfeng Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes |
title | Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes |
title_full | Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes |
title_fullStr | Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes |
title_full_unstemmed | Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes |
title_short | Expectation value of $\mathrm{T}\overline{\mathrm{T}}$ operator in curved spacetimes |
title_sort | expectation value of $\mathrm{t}\overline{\mathrm{t}}$ operator in curved spacetimes |
topic | hep-th Particle Physics - Theory |
url | https://dx.doi.org/10.1007/JHEP02(2020)094 http://cds.cern.ch/record/2668166 |
work_keys_str_mv | AT jiangyunfeng expectationvalueofmathrmtoverlinemathrmtoperatorincurvedspacetimes |