Cargando…
Evidence for quark-matter cores in massive neutron stars
The theory governing the strong nuclear force—quantum chromodynamics—predicts that at sufficiently high energy densities, hadronic nuclear matter undergoes a deconfinement transition to a new phase of quarks and gluons1 . Although this has been observed in ultrarelativistic heavy-ion collisions2,3 ,...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1038/s41567-020-0914-9 http://cds.cern.ch/record/2668708 |
_version_ | 1780962184172404736 |
---|---|
author | Annala, Eemeli Gorda, Tyler Kurkela, Aleksi Nättilä, Joonas Vuorinen, Aleksi |
author_facet | Annala, Eemeli Gorda, Tyler Kurkela, Aleksi Nättilä, Joonas Vuorinen, Aleksi |
author_sort | Annala, Eemeli |
collection | CERN |
description | The theory governing the strong nuclear force—quantum chromodynamics—predicts that at sufficiently high energy densities, hadronic nuclear matter undergoes a deconfinement transition to a new phase of quarks and gluons1 . Although this has been observed in ultrarelativistic heavy-ion collisions2,3 , it is currently an open question whether quark matter exists inside neutron stars4. By combining astrophysical observations and theoretical ab initio calculations in a model-independent way, we find that the inferred properties of matter in the cores of neutron stars with mass corresponding to 1.4 solar masses (M⊙) are compatible with nuclear model calculations. However, the matter in the interior of maximally massive stable neutron stars exhibits characteristics of the deconfined phase, which we interpret as evidence for the presence of quark-matter cores. For the heaviest reliably observed neutron stars5,6 with mass M≈ 2M⊙, the presence of quark matter is found to be linked to the behaviour of the speed of sound cs in strongly interacting matter. If the conformal bound $c_2^s \leqslant 1/3$ (ref. 7 ) is not strongly violated, massive neutron stars are predicted to have sizable quark-matter cores. This finding has important implications for the phenomenology of neutron stars and affects the dynamics of neutron star mergers with at least one sufficiently massive participant. |
id | cern-2668708 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | cern-26687082021-07-31T02:09:46Zdoi:10.1038/s41567-020-0914-9http://cds.cern.ch/record/2668708engAnnala, EemeliGorda, TylerKurkela, AleksiNättilä, JoonasVuorinen, AleksiEvidence for quark-matter cores in massive neutron starsnucl-thNuclear Physics - Theoryhep-phParticle Physics - Phenomenologyastro-ph.HEAstrophysics and AstronomyThe theory governing the strong nuclear force—quantum chromodynamics—predicts that at sufficiently high energy densities, hadronic nuclear matter undergoes a deconfinement transition to a new phase of quarks and gluons1 . Although this has been observed in ultrarelativistic heavy-ion collisions2,3 , it is currently an open question whether quark matter exists inside neutron stars4. By combining astrophysical observations and theoretical ab initio calculations in a model-independent way, we find that the inferred properties of matter in the cores of neutron stars with mass corresponding to 1.4 solar masses (M⊙) are compatible with nuclear model calculations. However, the matter in the interior of maximally massive stable neutron stars exhibits characteristics of the deconfined phase, which we interpret as evidence for the presence of quark-matter cores. For the heaviest reliably observed neutron stars5,6 with mass M≈ 2M⊙, the presence of quark matter is found to be linked to the behaviour of the speed of sound cs in strongly interacting matter. If the conformal bound $c_2^s \leqslant 1/3$ (ref. 7 ) is not strongly violated, massive neutron stars are predicted to have sizable quark-matter cores. This finding has important implications for the phenomenology of neutron stars and affects the dynamics of neutron star mergers with at least one sufficiently massive participant.The cores of neutron stars could be made of hadronic matter or quark matter. By combining first-principles calculations with observational data, evidence for the presence of quark matter in neutron star cores is found.The theory governing the strong nuclear force, Quantum Chromodynamics, predicts that at sufficiently high energy densities hadronic nuclear matter undergoes a deconfinement transition to a new phase of quarks and gluons. Although this has been observed in ultrarelativistic heavy-ion collisions, it is currently an open question whether quark matter exists inside neutron stars. By combining astrophysical observations and theoretical ab-initio calculations in a model-independent way, we find that the inferred properties of matter in the cores of neutron stars with mass corresponding to 1.4 solar masses are compatible with nuclear model calculations. However, the matter in the interior of maximally massive, stable neutron stars exhibits characteristics of the deconfined phase, which we interpret as evidence for the presence of quark-matter cores. For the heaviest reliably observed neutron stars with masses of about two solar masses, the presence of quark matter is found to be linked to the behaviour of the speed of sound c_s in strongly interacting matter. If the conformal bound (c_s)^2 < 1/3 is not strongly violated, massive neutron stars are predicted to have sizable quark-matter cores. This finding has important implications for the phenomenology of neutron stars, and affects the dynamics of neutron star mergers with at least one sufficiently massive participant.arXiv:1903.09121CERN-TH-2019-031HIP-2019-7/THoai:cds.cern.ch:26687082019-03-21 |
spellingShingle | nucl-th Nuclear Physics - Theory hep-ph Particle Physics - Phenomenology astro-ph.HE Astrophysics and Astronomy Annala, Eemeli Gorda, Tyler Kurkela, Aleksi Nättilä, Joonas Vuorinen, Aleksi Evidence for quark-matter cores in massive neutron stars |
title | Evidence for quark-matter cores in massive neutron stars |
title_full | Evidence for quark-matter cores in massive neutron stars |
title_fullStr | Evidence for quark-matter cores in massive neutron stars |
title_full_unstemmed | Evidence for quark-matter cores in massive neutron stars |
title_short | Evidence for quark-matter cores in massive neutron stars |
title_sort | evidence for quark-matter cores in massive neutron stars |
topic | nucl-th Nuclear Physics - Theory hep-ph Particle Physics - Phenomenology astro-ph.HE Astrophysics and Astronomy |
url | https://dx.doi.org/10.1038/s41567-020-0914-9 http://cds.cern.ch/record/2668708 |
work_keys_str_mv | AT annalaeemeli evidenceforquarkmattercoresinmassiveneutronstars AT gordatyler evidenceforquarkmattercoresinmassiveneutronstars AT kurkelaaleksi evidenceforquarkmattercoresinmassiveneutronstars AT nattilajoonas evidenceforquarkmattercoresinmassiveneutronstars AT vuorinenaleksi evidenceforquarkmattercoresinmassiveneutronstars |