Cargando…

Quantum group random walks in strongly correlated 2 + 1 D spin systems

We consider the temporal evolution of strong correlated degrees of freedom in 2+1~D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k.

Detalles Bibliográficos
Autores principales: Protogenov, A P, Rostovtsev, Yu V, Verbus, V A
Lenguaje:eng
Publicado: 1994
Materias:
Acceso en línea:http://cds.cern.ch/record/266934
Descripción
Sumario:We consider the temporal evolution of strong correlated degrees of freedom in 2+1~D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k.