Cargando…

Geometry and dynamics with time-dependent constraints

We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce...

Descripción completa

Detalles Bibliográficos
Autores principales: Evans, Jonathan M., Tuckey, Philip A.
Lenguaje:eng
Publicado: 1994
Materias:
Acceso en línea:http://cds.cern.ch/record/267044
_version_ 1780886734059339776
author Evans, Jonathan M.
Tuckey, Philip A.
author_facet Evans, Jonathan M.
Tuckey, Philip A.
author_sort Evans, Jonathan M.
collection CERN
description We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.
id cern-267044
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1994
record_format invenio
spelling cern-2670442023-03-14T20:44:21Zhttp://cds.cern.ch/record/267044engEvans, Jonathan M.Tuckey, Philip A.Geometry and dynamics with time-dependent constraintsGeneral Theoretical PhysicsWe describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.hep-th/9408055CERN-TH-7392-94MPI-PHT-94-45CERN-TH-7392-94MPI-PHT-94-45oai:cds.cern.ch:2670441994-08-09
spellingShingle General Theoretical Physics
Evans, Jonathan M.
Tuckey, Philip A.
Geometry and dynamics with time-dependent constraints
title Geometry and dynamics with time-dependent constraints
title_full Geometry and dynamics with time-dependent constraints
title_fullStr Geometry and dynamics with time-dependent constraints
title_full_unstemmed Geometry and dynamics with time-dependent constraints
title_short Geometry and dynamics with time-dependent constraints
title_sort geometry and dynamics with time-dependent constraints
topic General Theoretical Physics
url http://cds.cern.ch/record/267044
work_keys_str_mv AT evansjonathanm geometryanddynamicswithtimedependentconstraints
AT tuckeyphilipa geometryanddynamicswithtimedependentconstraints