Cargando…
Machine Learning Uncertainties with Adversarial Neural Networks
<!--HTML-->Machine learning is a powerful tool to reveal and exploit correlations in a multi-dimensional parameter space. Making predictions from such correlations is a highly non-trivial task, in particular when the details of the underlying dynamics of a theoretical model are not fully under...
Autor principal: | Galler, Peter |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672016 |
Ejemplares similares
-
Advanced Generative Adversarial Network Techniques
por: Glombitza, Jonas
Publicado: (2019) -
Fast Simulation Using Generative Adversarial Network in LHCB
por: Maevskiy, Artem
Publicado: (2019) -
High Granularity Calorimeter Simulation using Generative Adversarial Networks
por: Khattak, Gul Rukh
Publicado: (2019) -
Machine learning uncertainties with adversarial neural networks
por: Englert, Christoph, et al.
Publicado: (2019) -
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Palazzo, Serena
Publicado: (2019)