Cargando…
Learning Invariant Representations using Mutual Information Regularization
<!--HTML-->Invariance of learned representations of neural networks against certain sensitive attributes of the input data is a desirable trait in many modern-day applications of machine learning, such as precision measurements in experimental high-energy physics and enforcing algorithmic fair...
Autor principal: | Tan, Justin |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672020 |
Ejemplares similares
-
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
por: Kieseler, Jan
Publicado: (2019) -
The information theory of Deep Learning
por: Tishby, Naftali
Publicado: (2019) -
LHC measurements and additional information to use in global fits/EFT interpretations
por: Gilbert, Andrew
Publicado: (2021) -
Decoding Physics Information in DNNs
por: Cheng, Taoli
Publicado: (2019) -
An introduction to machine learning with Scikit-Learn
por: Dr. LOUPPE, Gilles
Publicado: (2015)