Cargando…
Neural networks for the abstraction of the physical symmetries in the nature
<!--HTML-->Neural networks are so powerful universal approximator of complicated patterns in large-scale data, leading the explosive developments of AI in terms of deep learning. However, in many cases, usual neural networks are trained to possess poor level of abstraction, so that the model...
Autor principal: | Cho, Wonsang |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672021 |
Ejemplares similares
-
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019) -
NeuralRinger: An Ensemble of Neural Networks Fed from Calorimeter Ring Sums for Triggering on Electrons
por: Spolidoro Freund, Werner
Publicado: (2019) -
Deep Learning and its Applications in the Natural Sciences
por: BALDI, Pierre
Publicado: (2015) -
Uncertain Networks
por: Thompson, Jennifer
Publicado: (2019) -
Decoding Physics Information in DNNs
por: Cheng, Taoli
Publicado: (2019)