Cargando…
Event Generation and Statistical Sampling with Deep Generative Models
<!--HTML-->We present a study for the generation of events from a physical process with generative deep learning. To simulate physical processes it is not only important to produce physical events, but also to produce the events with the right frequency of occurrence (density). We investigate...
Autor principal: | Otten, Sydney |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672120 |
Ejemplares similares
-
Deep generative models for fast shower simulation in ATLAS
por: Ghosh, Aishik
Publicado: (2019) -
Applying Generative Models to Scientific Research
por: Ratnikov, Fedor
Publicado: (2019) -
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Palazzo, Serena
Publicado: (2019) -
Advanced Generative Adversarial Network Techniques
por: Glombitza, Jonas
Publicado: (2019) -
Fast Simulation Using Generative Adversarial Network in LHCB
por: Maevskiy, Artem
Publicado: (2019)