Cargando…
Fast Simulation Using Generative Adversarial Network in LHCB
<!--HTML-->LHCb is one of the major experiments operating at the Large Hadron Collider at CERN. The richness of the physics program and the increasing precision of the measurements in LHCb lead to the need of ever larger simulated samples. This need will increase further when the upgraded LHCb...
Autor principal: | Maevskiy, Artem |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672121 |
Ejemplares similares
-
High Granularity Calorimeter Simulation using Generative Adversarial Networks
por: Khattak, Gul Rukh
Publicado: (2019) -
Advanced Generative Adversarial Network Techniques
por: Glombitza, Jonas
Publicado: (2019) -
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Palazzo, Serena
Publicado: (2019) -
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019) -
Deep generative models for fast shower simulation in ATLAS
por: Ghosh, Aishik
Publicado: (2019)