Cargando…
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
<!--HTML-->In this talk, I will present a Generative-Adversarial Network (GAN) based on convolutional neural networks that is used to simulate the production of pairs of jets at the LHC. The GAN is trained on events generated using MadGraph5 + Pythia8, and Delphes3 fast detector simulation. A...
Autor principal: | Palazzo, Serena |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672123 |
Ejemplares similares
-
A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Di Sipio, Riccardo, et al.
Publicado: (2019) -
Fast Simulation Using Generative Adversarial Network in LHCB
por: Maevskiy, Artem
Publicado: (2019) -
High Granularity Calorimeter Simulation using Generative Adversarial Networks
por: Khattak, Gul Rukh
Publicado: (2019) -
Advanced Generative Adversarial Network Techniques
por: Glombitza, Jonas
Publicado: (2019) -
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019)