Cargando…

The Tracking Machine Learning challenge : Accuracy phase

This paper reports the results of an experiment in high energy physics: using the power of the "crowd" to solve difficult experimental problems linked to tracking accurately the trajectory of particles in the Large Hadron Collider (LHC). This experiment took the form of a machine learning...

Descripción completa

Detalles Bibliográficos
Autores principales: Amrouche, Sabrina, Basara, Laurent, Calafiura, Paolo, Estrade, Victor, Farrell, Steven, Ferreira, Diogo R., Finnie, Liam, Finnie, Nicole, Germain, Cécile, Gligorov, Vladimir Vava, Golling, Tobias, Gorbunov, Sergey, Gray, Heather, Guyon, Isabelle, Hushchyn, Mikhail, Innocente, Vincenzo, Kiehn, Moritz, Moyse, Edward, Puget, Jean-Francois, Reina, Yuval, Rousseau, David, Salzburger, Andreas, Ustyuzhanin, Andrey, Vlimant, Jean-Roch, Wind, Johan Sokrates, Xylouris, Trian, Yilmaz, Yetkin
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-030-29135-8_9
http://cds.cern.ch/record/2672222
_version_ 1780962451168165888
author Amrouche, Sabrina
Basara, Laurent
Calafiura, Paolo
Estrade, Victor
Farrell, Steven
Ferreira, Diogo R.
Finnie, Liam
Finnie, Nicole
Germain, Cécile
Gligorov, Vladimir Vava
Golling, Tobias
Gorbunov, Sergey
Gray, Heather
Guyon, Isabelle
Hushchyn, Mikhail
Innocente, Vincenzo
Kiehn, Moritz
Moyse, Edward
Puget, Jean-Francois
Reina, Yuval
Rousseau, David
Salzburger, Andreas
Ustyuzhanin, Andrey
Vlimant, Jean-Roch
Wind, Johan Sokrates
Xylouris, Trian
Yilmaz, Yetkin
author_facet Amrouche, Sabrina
Basara, Laurent
Calafiura, Paolo
Estrade, Victor
Farrell, Steven
Ferreira, Diogo R.
Finnie, Liam
Finnie, Nicole
Germain, Cécile
Gligorov, Vladimir Vava
Golling, Tobias
Gorbunov, Sergey
Gray, Heather
Guyon, Isabelle
Hushchyn, Mikhail
Innocente, Vincenzo
Kiehn, Moritz
Moyse, Edward
Puget, Jean-Francois
Reina, Yuval
Rousseau, David
Salzburger, Andreas
Ustyuzhanin, Andrey
Vlimant, Jean-Roch
Wind, Johan Sokrates
Xylouris, Trian
Yilmaz, Yetkin
author_sort Amrouche, Sabrina
collection CERN
description This paper reports the results of an experiment in high energy physics: using the power of the "crowd" to solve difficult experimental problems linked to tracking accurately the trajectory of particles in the Large Hadron Collider (LHC). This experiment took the form of a machine learning challenge organized in 2018: the Tracking Machine Learning Challenge (TrackML). Its results were discussed at the competition session at the Neural Information Processing Systems conference (NeurIPS 2018). Given 100.000 points, the participants had to connect them into about 10.000 arcs of circles, following the trajectory of particles issued from very high energy proton collisions. The competition was difficult with a dozen front-runners well ahead of a pack. The single competition score is shown to be accurate and effective in selecting the best algorithms from the domain point of view. The competition has exposed a diversity of approaches, with various roles for Machine Learning, a number of which are discussed in the document
id cern-2672222
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-26722222022-11-02T04:05:06Zdoi:10.1007/978-3-030-29135-8_9http://cds.cern.ch/record/2672222engAmrouche, SabrinaBasara, LaurentCalafiura, PaoloEstrade, VictorFarrell, StevenFerreira, Diogo R.Finnie, LiamFinnie, NicoleGermain, CécileGligorov, Vladimir VavaGolling, TobiasGorbunov, SergeyGray, HeatherGuyon, IsabelleHushchyn, MikhailInnocente, VincenzoKiehn, MoritzMoyse, EdwardPuget, Jean-FrancoisReina, YuvalRousseau, DavidSalzburger, AndreasUstyuzhanin, AndreyVlimant, Jean-RochWind, Johan SokratesXylouris, TrianYilmaz, YetkinThe Tracking Machine Learning challenge : Accuracy phasephysics.data-anOther Fields of Physicshep-exParticle Physics - ExperimentThis paper reports the results of an experiment in high energy physics: using the power of the "crowd" to solve difficult experimental problems linked to tracking accurately the trajectory of particles in the Large Hadron Collider (LHC). This experiment took the form of a machine learning challenge organized in 2018: the Tracking Machine Learning Challenge (TrackML). Its results were discussed at the competition session at the Neural Information Processing Systems conference (NeurIPS 2018). Given 100.000 points, the participants had to connect them into about 10.000 arcs of circles, following the trajectory of particles issued from very high energy proton collisions. The competition was difficult with a dozen front-runners well ahead of a pack. The single competition score is shown to be accurate and effective in selecting the best algorithms from the domain point of view. The competition has exposed a diversity of approaches, with various roles for Machine Learning, a number of which are discussed in the documentarXiv:1904.06778oai:cds.cern.ch:26722222020
spellingShingle physics.data-an
Other Fields of Physics
hep-ex
Particle Physics - Experiment
Amrouche, Sabrina
Basara, Laurent
Calafiura, Paolo
Estrade, Victor
Farrell, Steven
Ferreira, Diogo R.
Finnie, Liam
Finnie, Nicole
Germain, Cécile
Gligorov, Vladimir Vava
Golling, Tobias
Gorbunov, Sergey
Gray, Heather
Guyon, Isabelle
Hushchyn, Mikhail
Innocente, Vincenzo
Kiehn, Moritz
Moyse, Edward
Puget, Jean-Francois
Reina, Yuval
Rousseau, David
Salzburger, Andreas
Ustyuzhanin, Andrey
Vlimant, Jean-Roch
Wind, Johan Sokrates
Xylouris, Trian
Yilmaz, Yetkin
The Tracking Machine Learning challenge : Accuracy phase
title The Tracking Machine Learning challenge : Accuracy phase
title_full The Tracking Machine Learning challenge : Accuracy phase
title_fullStr The Tracking Machine Learning challenge : Accuracy phase
title_full_unstemmed The Tracking Machine Learning challenge : Accuracy phase
title_short The Tracking Machine Learning challenge : Accuracy phase
title_sort tracking machine learning challenge : accuracy phase
topic physics.data-an
Other Fields of Physics
hep-ex
Particle Physics - Experiment
url https://dx.doi.org/10.1007/978-3-030-29135-8_9
http://cds.cern.ch/record/2672222
work_keys_str_mv AT amrouchesabrina thetrackingmachinelearningchallengeaccuracyphase
AT basaralaurent thetrackingmachinelearningchallengeaccuracyphase
AT calafiurapaolo thetrackingmachinelearningchallengeaccuracyphase
AT estradevictor thetrackingmachinelearningchallengeaccuracyphase
AT farrellsteven thetrackingmachinelearningchallengeaccuracyphase
AT ferreiradiogor thetrackingmachinelearningchallengeaccuracyphase
AT finnieliam thetrackingmachinelearningchallengeaccuracyphase
AT finnienicole thetrackingmachinelearningchallengeaccuracyphase
AT germaincecile thetrackingmachinelearningchallengeaccuracyphase
AT gligorovvladimirvava thetrackingmachinelearningchallengeaccuracyphase
AT gollingtobias thetrackingmachinelearningchallengeaccuracyphase
AT gorbunovsergey thetrackingmachinelearningchallengeaccuracyphase
AT grayheather thetrackingmachinelearningchallengeaccuracyphase
AT guyonisabelle thetrackingmachinelearningchallengeaccuracyphase
AT hushchynmikhail thetrackingmachinelearningchallengeaccuracyphase
AT innocentevincenzo thetrackingmachinelearningchallengeaccuracyphase
AT kiehnmoritz thetrackingmachinelearningchallengeaccuracyphase
AT moyseedward thetrackingmachinelearningchallengeaccuracyphase
AT pugetjeanfrancois thetrackingmachinelearningchallengeaccuracyphase
AT reinayuval thetrackingmachinelearningchallengeaccuracyphase
AT rousseaudavid thetrackingmachinelearningchallengeaccuracyphase
AT salzburgerandreas thetrackingmachinelearningchallengeaccuracyphase
AT ustyuzhaninandrey thetrackingmachinelearningchallengeaccuracyphase
AT vlimantjeanroch thetrackingmachinelearningchallengeaccuracyphase
AT windjohansokrates thetrackingmachinelearningchallengeaccuracyphase
AT xylouristrian thetrackingmachinelearningchallengeaccuracyphase
AT yilmazyetkin thetrackingmachinelearningchallengeaccuracyphase
AT amrouchesabrina trackingmachinelearningchallengeaccuracyphase
AT basaralaurent trackingmachinelearningchallengeaccuracyphase
AT calafiurapaolo trackingmachinelearningchallengeaccuracyphase
AT estradevictor trackingmachinelearningchallengeaccuracyphase
AT farrellsteven trackingmachinelearningchallengeaccuracyphase
AT ferreiradiogor trackingmachinelearningchallengeaccuracyphase
AT finnieliam trackingmachinelearningchallengeaccuracyphase
AT finnienicole trackingmachinelearningchallengeaccuracyphase
AT germaincecile trackingmachinelearningchallengeaccuracyphase
AT gligorovvladimirvava trackingmachinelearningchallengeaccuracyphase
AT gollingtobias trackingmachinelearningchallengeaccuracyphase
AT gorbunovsergey trackingmachinelearningchallengeaccuracyphase
AT grayheather trackingmachinelearningchallengeaccuracyphase
AT guyonisabelle trackingmachinelearningchallengeaccuracyphase
AT hushchynmikhail trackingmachinelearningchallengeaccuracyphase
AT innocentevincenzo trackingmachinelearningchallengeaccuracyphase
AT kiehnmoritz trackingmachinelearningchallengeaccuracyphase
AT moyseedward trackingmachinelearningchallengeaccuracyphase
AT pugetjeanfrancois trackingmachinelearningchallengeaccuracyphase
AT reinayuval trackingmachinelearningchallengeaccuracyphase
AT rousseaudavid trackingmachinelearningchallengeaccuracyphase
AT salzburgerandreas trackingmachinelearningchallengeaccuracyphase
AT ustyuzhaninandrey trackingmachinelearningchallengeaccuracyphase
AT vlimantjeanroch trackingmachinelearningchallengeaccuracyphase
AT windjohansokrates trackingmachinelearningchallengeaccuracyphase
AT xylouristrian trackingmachinelearningchallengeaccuracyphase
AT yilmazyetkin trackingmachinelearningchallengeaccuracyphase