Cargando…
The Tracking Machine Learning challenge : Accuracy phase
This paper reports the results of an experiment in high energy physics: using the power of the "crowd" to solve difficult experimental problems linked to tracking accurately the trajectory of particles in the Large Hadron Collider (LHC). This experiment took the form of a machine learning...
Autores principales: | Amrouche, Sabrina, Basara, Laurent, Calafiura, Paolo, Estrade, Victor, Farrell, Steven, Ferreira, Diogo R., Finnie, Liam, Finnie, Nicole, Germain, Cécile, Gligorov, Vladimir Vava, Golling, Tobias, Gorbunov, Sergey, Gray, Heather, Guyon, Isabelle, Hushchyn, Mikhail, Innocente, Vincenzo, Kiehn, Moritz, Moyse, Edward, Puget, Jean-Francois, Reina, Yuval, Rousseau, David, Salzburger, Andreas, Ustyuzhanin, Andrey, Vlimant, Jean-Roch, Wind, Johan Sokrates, Xylouris, Trian, Yilmaz, Yetkin |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-29135-8_9 http://cds.cern.ch/record/2672222 |
Ejemplares similares
-
TrackML : a tracking Machine Learning challenge
por: Golling, Tobias, et al.
Publicado: (2019) -
The Tracking Machine Learning challenge : Throughput phase
por: Amrouche, Sabrina, et al.
Publicado: (2021) -
The TrackML high-energy physics tracking challenge on Kaggle
por: Kiehn, Moritz, et al.
Publicado: (2019) -
TrackML: A High Energy Physics Particle Tracking Challenge
por: Calafiura, Polo, et al.
Publicado: (2018) -
Reproducible Experiment Platform
por: Likhomanenko, Tatiana, et al.
Publicado: (2015)