Cargando…
High Granularity Calorimeter Simulation using Generative Adversarial Networks
<!--HTML-->High Energy Physics simulation typically involves Monte Carlo method. Today >50% of WLCG resources are used for simulation that will increase further as detector granularity and luminosity increase. Machine learning has been very successful in the field of image recognition and g...
Autor principal: | Khattak, Gul Rukh |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672366 |
Ejemplares similares
-
Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks
por: Khattak, Gul Rukh, et al.
Publicado: (2021) -
Fast Simulation Using Generative Adversarial Network in LHCB
por: Maevskiy, Artem
Publicado: (2019) -
Advanced Generative Adversarial Network Techniques
por: Glombitza, Jonas
Publicado: (2019) -
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Palazzo, Serena
Publicado: (2019) -
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019)