Cargando…
Exploring SMEFT in VH channel with Machine Learning
<!--HTML-->We use Machine Learning(ML) techniques to exploit kinematic information in VH, the production of a Higgs in association with a massive vector boson. We parametrize the effect of new physics in terms of the SMEFT framework. We find that the use of a shallow neural network allows us t...
Autor principal: | Khosa, Charanjit Kaur |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672371 |
Ejemplares similares
-
An introduction to machine learning with Scikit-Learn
por: Dr. LOUPPE, Gilles
Publicado: (2015) -
The Tracking Machine Learning challenge
por: Rousseau, David
Publicado: (2019) -
Containers for Machine Learning in HEP
por: Feickert, Matthew
Publicado: (2019) -
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019) -
Machine learning, computer vision, and probabilistic models in jet physics
por: KAGAN, Michael Aaron, et al.
Publicado: (2015)