Cargando…
Feature ranking based on subtraction methods
<!--HTML-->The input variables of ML methods in physics analysis are often highly correlated and figuring out which ones are the most important ones for the classification turns out to be a non-trivial tasks. We compare the standard method of TMVA to rank variables with a several newly devel...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672551 |
Sumario: | <!--HTML-->The input variables of ML methods in physics analysis are often highly correlated and figuring out which ones are the most important ones for the classification turns out to be a non-trivial tasks. We compare the standard method of TMVA to rank variables with a several newly developed methods based on iterative removal for the use case of a search for top pair associated Higgs production (ttH) in the Higgs to b-pair decay channel. |
---|