Cargando…
Feature ranking based on subtraction methods
<!--HTML-->The input variables of ML methods in physics analysis are often highly correlated and figuring out which ones are the most important ones for the classification turns out to be a non-trivial tasks. We compare the standard method of TMVA to rank variables with a several newly devel...
Autor principal: | Glaysher, Paul |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672551 |
Ejemplares similares
-
Feature Extraction
por: Dr. GLEYZER, Sergei
Publicado: (2015) -
Detection of small/rare features
por: Sardy, Sylvain
Publicado: (2011) -
Physics inspired Autonomous Feature Engineering
por: Rieger, Marcel
Publicado: (2019) -
SModelS v2.0: new features and developments
por: Lessa, Andre
Publicado: (2021) -
ABC Method
por: WILKINSON, Richard
Publicado: (2015)