Cargando…
Model-Assisted GANs for the optimisation of simulation parameters and as an algorithm for fast Monte Carlo production
<!--HTML-->We propose and demonstrate the use of a Model-Assisted Generative Adversarial Network to produce simulated images that accurately match true images through the variation of underlying model parameters that describe the image generation process. The generator learns the parameter val...
Autor principal: | Alonso Monsalve, Saul |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672623 |
Ejemplares similares
-
DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
por: Palazzo, Serena
Publicado: (2019) -
Deep generative models for fast shower simulation in ATLAS
por: Ghosh, Aishik
Publicado: (2019) -
Fast Simulation Using Generative Adversarial Network in LHCB
por: Maevskiy, Artem
Publicado: (2019) -
Traditional approach to network architecture optimisation
por: Ustyuzhanin, Andrey
Publicado: (2019) -
The Retina Algorithm
por: RISTORI, Luciano Frances, et al.
Publicado: (2015)