Cargando…
GroomRL: jet grooming through reinforcement learning
<!--HTML-->We introduce a novel implementation of a reinforcement learning algorithm which is adapted to the problem of jet grooming, a crucial component of jet physics at hadron colliders. We show that the grooming policies trained using a Deep Q-Network model outperform state-of-the-art tool...
Autor principal: | Dreyer, Frederic Alexandre |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672625 |
Ejemplares similares
-
Jet Grooming at ATLAS
por: Thompson, E N
Publicado: (2012) -
Jet substructure via dynamical grooming
por: Soto Ontoso, Alba
Publicado: (2020) -
Machine learning, computer vision, and probabilistic models in jet physics
por: KAGAN, Michael Aaron, et al.
Publicado: (2015) -
Jet Quenching from light to dense systems
por: Apolinario, Liliana
Publicado: (2021) -
ParticleNet: Jet Tagging via Particle Clouds
por: Qu, Huilin
Publicado: (2019)