Cargando…
NeuralRinger: An Ensemble of Neural Networks Fed from Calorimeter Ring Sums for Triggering on Electrons
<!--HTML-->In 2017, the ATLAS experiment implemented an ensemble of neural networks (NeuralRinger algorithm) dedicated to reduce the latency of the first, fast, online software (HLT) selection stage for electrons with transverse energy above 15 GeV. In order to minimize detector response and s...
Autor principal: | Spolidoro Freund, Werner |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672626 |
Ejemplares similares
-
Machine Learning Uncertainties with Adversarial Neural Networks
por: Galler, Peter
Publicado: (2019) -
Neural networks for the abstraction of the physical symmetries in the nature
por: Cho, Wonsang
Publicado: (2019) -
High Granularity Calorimeter Simulation using Generative Adversarial Networks
por: Khattak, Gul Rukh
Publicado: (2019) -
Fast Deep Learning on FPGAs for the Phase-II L0 Muon Barrel Trigger of the ATLAS Experiment
por: Sabetta, Luigi
Publicado: (2019) -
An Ensemble of Neural Networks for Online Electron Filtering at the ATLAS Experiment
por: Spolidoro Freund, Werner
Publicado: (2019)