Cargando…
Tracking at Hadron Colliders with Machine Learning
<!--HTML--><div> <div> <div> <p>The reconstruction of charged particle trajectories is one of the main requirement for being able to achieve the research goals in collider physics. The resolution on kinematics obtained at low transverse momentum is crucial to many analy...
Autor principal: | Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2672711 |
Ejemplares similares
-
Learning to discover: machine learning in high-energy physics
por: Kégl, Balázs
Publicado: (2014) -
Machine Learning applications in CMS
por: Stoye, Markus
Publicado: (2017) -
Real-time Machine Learning in particle physics
por: Aarrestad, Thea
Publicado: (2022) -
The Ways of Four-Quark Hadrons
por: Polosa, Antonio
Publicado: (2014) -
How the machine learning conquers reconstruction in neutrino experiments
por: Sulej, Robert
Publicado: (2017)