Cargando…

Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$

An analytic expression is derived for the leading finite-volume effects arising in lattice QCD calculations of the hadronic-vacuum-polarization contribution to the muon's magnetic moment, $a_\mu^{\text{HVP,LO}} \equiv (g-2)_\mu^{\text{HVP,LO}}/2$. For calculations in a finite spatial volume wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hansen, Maxwell T., Patella, Agostino
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevLett.123.172001
http://cds.cern.ch/record/2672950
_version_ 1780962479682093056
author Hansen, Maxwell T.
Patella, Agostino
author_facet Hansen, Maxwell T.
Patella, Agostino
author_sort Hansen, Maxwell T.
collection CERN
description An analytic expression is derived for the leading finite-volume effects arising in lattice QCD calculations of the hadronic-vacuum-polarization contribution to the muon's magnetic moment, $a_\mu^{\text{HVP,LO}} \equiv (g-2)_\mu^{\text{HVP,LO}}/2$. For calculations in a finite spatial volume with periodicity $L$, $a_\mu^{\text{HVP,LO}}(L)$ admits a transseries expansion with exponentially suppressed $L$ scaling. Using a Hamiltonian approach, we show that the leading finite-volume correction scales as $\exp[- M_\pi L]$ with a prefactor given by the (infinite-volume) Compton amplitude of the pion, integrated with the muon-mass-dependent kernel. To give a complete quantitative expression, we decompose the Compton amplitude into the space-like pion form factor, $F_\pi(Q^2)$, and a multi-particle piece. We determine the latter through NLO in chiral perturbation theory and find that it contributes negligibly and through a universal term that depends only on the pion decay constant, with all additional low-energy constants dropping out of the integral.
id cern-2672950
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26729502022-06-25T02:26:26Zdoi:10.1103/PhysRevLett.123.172001http://cds.cern.ch/record/2672950engHansen, Maxwell T.Patella, AgostinoFinite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$hep-latParticle Physics - LatticeAn analytic expression is derived for the leading finite-volume effects arising in lattice QCD calculations of the hadronic-vacuum-polarization contribution to the muon's magnetic moment, $a_\mu^{\text{HVP,LO}} \equiv (g-2)_\mu^{\text{HVP,LO}}/2$. For calculations in a finite spatial volume with periodicity $L$, $a_\mu^{\text{HVP,LO}}(L)$ admits a transseries expansion with exponentially suppressed $L$ scaling. Using a Hamiltonian approach, we show that the leading finite-volume correction scales as $\exp[- M_\pi L]$ with a prefactor given by the (infinite-volume) Compton amplitude of the pion, integrated with the muon-mass-dependent kernel. To give a complete quantitative expression, we decompose the Compton amplitude into the space-like pion form factor, $F_\pi(Q^2)$, and a multi-particle piece. We determine the latter through NLO in chiral perturbation theory and find that it contributes negligibly and through a universal term that depends only on the pion decay constant, with all additional low-energy constants dropping out of the integral.arXiv:1904.10010CERN-TH-2019-051oai:cds.cern.ch:26729502019-04-22
spellingShingle hep-lat
Particle Physics - Lattice
Hansen, Maxwell T.
Patella, Agostino
Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$
title Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$
title_full Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$
title_fullStr Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$
title_full_unstemmed Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$
title_short Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$
title_sort finite-volume effects in $(g-2)^{\text{hvp,lo}}_\mu$
topic hep-lat
Particle Physics - Lattice
url https://dx.doi.org/10.1103/PhysRevLett.123.172001
http://cds.cern.ch/record/2672950
work_keys_str_mv AT hansenmaxwellt finitevolumeeffectsing2texthvplomu
AT patellaagostino finitevolumeeffectsing2texthvplomu