Cargando…

On Stein's method for infinitely divisible laws with finite first moment

This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing ident...

Descripción completa

Detalles Bibliográficos
Autores principales: Arras, Benjamin, Houdré, Christian
Lenguaje:eng
Publicado: Springer 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-030-15017-4
http://cds.cern.ch/record/2673422
_version_ 1780962498876276736
author Arras, Benjamin
Houdré, Christian
author_facet Arras, Benjamin
Houdré, Christian
author_sort Arras, Benjamin
collection CERN
description This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classical weak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
id cern-2673422
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
publisher Springer
record_format invenio
spelling cern-26734222021-04-21T18:25:25Zdoi:10.1007/978-3-030-15017-4http://cds.cern.ch/record/2673422engArras, BenjaminHoudré, ChristianOn Stein's method for infinitely divisible laws with finite first momentMathematical Physics and MathematicsThis book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classical weak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.Springeroai:cds.cern.ch:26734222019
spellingShingle Mathematical Physics and Mathematics
Arras, Benjamin
Houdré, Christian
On Stein's method for infinitely divisible laws with finite first moment
title On Stein's method for infinitely divisible laws with finite first moment
title_full On Stein's method for infinitely divisible laws with finite first moment
title_fullStr On Stein's method for infinitely divisible laws with finite first moment
title_full_unstemmed On Stein's method for infinitely divisible laws with finite first moment
title_short On Stein's method for infinitely divisible laws with finite first moment
title_sort on stein's method for infinitely divisible laws with finite first moment
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-030-15017-4
http://cds.cern.ch/record/2673422
work_keys_str_mv AT arrasbenjamin onsteinsmethodforinfinitelydivisiblelawswithfinitefirstmoment
AT houdrechristian onsteinsmethodforinfinitelydivisiblelawswithfinitefirstmoment