Cargando…
Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems
A wandering domain for a diffeomorphism \Psi of \mathbb A^n=T^*\mathbb T^n is an open connected set W such that \Psi ^k(W)\cap W=\emptyset for all k\in \mathbb Z^*. The authors endow \mathbb A^n with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map \Phi ^h...
Autores principales: | Lazzarini, Laurent, Marco, Jean-Pierre, Sauzin, David |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2675426 |
Ejemplares similares
-
Gevrey-smoothness of lower dimensional hyperbolic invariant tori for nearly integrable symplectic mappings
por: Jiang, Shunjun
Publicado: (2017) -
Théorèmes d'indices Gevrey pour les équations différentielles ordinaires
por: Ramis, Jean-Pierre
Publicado: (1984) -
Phase Space Tunneling for Operators with Symbols in a Gevrey Class
por: Jung, K
Publicado: (1997) -
On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems
por: Lochak, P, et al.
Publicado: (2003) -
Symplectic geometry of integrable Hamiltonian systems
por: Audin, M, et al.
Publicado: (2003)