Cargando…
Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expresse...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2675432 |
Sumario: | An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expressed as a ratio of \Gamma functions for d even, of all d\times d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space. |
---|