Cargando…

Dilations, linear matrix inequalities, the matrix cube problem and beta distributions

An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expresse...

Descripción completa

Detalles Bibliográficos
Autores principales: Helton, J William, Klep, Igor, McCullough, Scott
Lenguaje:eng
Publicado: American Mathematical Society 2018
Materias:
Acceso en línea:http://cds.cern.ch/record/2675432
Descripción
Sumario:An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expressed as a ratio of \Gamma functions for d even, of all d\times d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.