Cargando…

Dilations, linear matrix inequalities, the matrix cube problem and beta distributions

An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expresse...

Descripción completa

Detalles Bibliográficos
Autores principales: Helton, J William, Klep, Igor, McCullough, Scott
Lenguaje:eng
Publicado: American Mathematical Society 2018
Materias:
Acceso en línea:http://cds.cern.ch/record/2675432
_version_ 1780962638531919872
author Helton, J William
Klep, Igor
McCullough, Scott
author_facet Helton, J William
Klep, Igor
McCullough, Scott
author_sort Helton, J William
collection CERN
description An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expressed as a ratio of \Gamma functions for d even, of all d\times d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.
id cern-2675432
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
publisher American Mathematical Society
record_format invenio
spelling cern-26754322021-04-21T18:24:51Zhttp://cds.cern.ch/record/2675432engHelton, J WilliamKlep, IgorMcCullough, ScottDilations, linear matrix inequalities, the matrix cube problem and beta distributionsMathematical Physics and MathematicsAn operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expressed as a ratio of \Gamma functions for d even, of all d\times d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.American Mathematical Societyoai:cds.cern.ch:26754322018
spellingShingle Mathematical Physics and Mathematics
Helton, J William
Klep, Igor
McCullough, Scott
Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
title Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
title_full Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
title_fullStr Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
title_full_unstemmed Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
title_short Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
title_sort dilations, linear matrix inequalities, the matrix cube problem and beta distributions
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2675432
work_keys_str_mv AT heltonjwilliam dilationslinearmatrixinequalitiesthematrixcubeproblemandbetadistributions
AT klepigor dilationslinearmatrixinequalitiesthematrixcubeproblemandbetadistributions
AT mcculloughscott dilationslinearmatrixinequalitiesthematrixcubeproblemandbetadistributions