Cargando…
Dilations, linear matrix inequalities, the matrix cube problem and beta distributions
An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expresse...
Autores principales: | Helton, J William, Klep, Igor, McCullough, Scott |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2675432 |
Ejemplares similares
-
Matrix inequalities
por: Zhan, Xingzhi
Publicado: (2002) -
Linear models and the relevant distributions and matrix algebra
por: Harville, David A
Publicado: (2018) -
Orthogonal sets and polar methods in linear algebra: applications to matrix calculations, systems of equations, inequalities, and linear programming
por: Castillo, Enrique, et al.
Publicado: (2011) -
Linear functions and matrix theory
por: Jacob, Bill
Publicado: (1995) -
Linear algebra and matrix theory
por: Stoll, Robert R
Publicado: (1952)