Cargando…
Identifying Merged Tracks in Dense Environments with Machine Learning
Tracking in high density environments plays an important role in many physics analyses at the LHC. In such environments, it is possible that two nearly collinear particles contribute to the same hits as they travel through the ATLAS pixel detector and semiconductor tracker. If the two particles are...
Autores principales: | McCormack, William Patrick, Nachman, Benjamin Philip, Garcia-Sciveres, Maurice |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2676509 |
Ejemplares similares
-
Identifying Merged Tracks in Dense Environments with Machine Learning
por: McCormack, Patrick, et al.
Publicado: (2019) -
Identifying merged clusters in the ATLAS strip detector
por: McCormack, William Patrick, et al.
Publicado: (2018) -
Splitting Strip Detector Clusters in Dense Environments
por: Nachman, Benjamin Philip, et al.
Publicado: (2018) -
Low-Pt Tracking for ATLAS Analyses
por: McCormack, William Patrick, et al.
Publicado: (2020) -
Low-$p_{\mathrm{T}}$ tracking for ATLAS in nominal LHC pileup
por: McCormack, William Patrick, et al.
Publicado: (2020)