Cargando…
Hardware Accelerated ATLAS Workloads on the WLCG grid
In recent years the usage of machine learning techniques within data-intensive sciences in general and high-energy physics in particular has rapidly increased, in part due to the availability of large datasets on which such algorithms can be trained as well as suitable hardware, such as graphics or...
Autores principales: | Forti, Alessandra, Heinrich, Lukas, Guth, Manuel |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1525/1/012059 http://cds.cern.ch/record/2676789 |
Ejemplares similares
-
Hardware Accelerated ATLAS Workloads on the WLCG
por: Forti, Alessandra, et al.
Publicado: (2019) -
Containers usage on the ATLAS grid infrastructure
por: Forti, Alessandra, et al.
Publicado: (2018) -
Continuous Analysis
-- User Containers on the Grid
por: Heinrich, Lukas, et al.
Publicado: (2019) -
Use of hardware accelerators for ATLAS computing
por: Bauce, Matteo, et al.
Publicado: (2014) -
Use of hardware accelerators for ATLAS computing
por: Dankel, Maik, et al.
Publicado: (2014)