Cargando…
Graph Network in High Energy Physics
<!--HTML-->Collisions at the CERN Large Hadron Collider (LHC) produce showers of particles that are detected by heterogenous detectors composed of hundreds of millions of individual sensors, laid out under complex geometry. An event can be seen as a tree of detectable particles branching from...
Autor principal: | Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2678200 |
Ejemplares similares
-
Graph Variational Autoencoder for Detector Reconstruction and Fast Simulation in High-Energy Physics
por: Hariri, Ali
Publicado: (2021) -
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
por: Kansal, Raghav, et al.
Publicado: (2020) -
Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
por: Ju, Xiangyang, et al.
Publicado: (2020) -
Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks
por: Qasim, Shah Rukh
Publicado: (2021) -
Statistics and uncertainty in high energy physics
por: Staley, Kent
Publicado: (2018)