Cargando…

An invitation to Alexandrov geometry: CAT(0) spaces

Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book...

Descripción completa

Detalles Bibliográficos
Autores principales: Alexander, Stephanie, Kapovitch, Vitali, Petrunin, Anton
Lenguaje:eng
Publicado: Springer 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-030-05312-3
http://cds.cern.ch/record/2678343
_version_ 1780962841585516544
author Alexander, Stephanie
Kapovitch, Vitali
Petrunin, Anton
author_facet Alexander, Stephanie
Kapovitch, Vitali
Petrunin, Anton
author_sort Alexander, Stephanie
collection CERN
description Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.
id cern-2678343
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
publisher Springer
record_format invenio
spelling cern-26783432021-04-21T18:23:58Zdoi:10.1007/978-3-030-05312-3http://cds.cern.ch/record/2678343engAlexander, StephanieKapovitch, VitaliPetrunin, AntonAn invitation to Alexandrov geometry: CAT(0) spacesMathematical Physics and MathematicsAimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.Springeroai:cds.cern.ch:26783432019
spellingShingle Mathematical Physics and Mathematics
Alexander, Stephanie
Kapovitch, Vitali
Petrunin, Anton
An invitation to Alexandrov geometry: CAT(0) spaces
title An invitation to Alexandrov geometry: CAT(0) spaces
title_full An invitation to Alexandrov geometry: CAT(0) spaces
title_fullStr An invitation to Alexandrov geometry: CAT(0) spaces
title_full_unstemmed An invitation to Alexandrov geometry: CAT(0) spaces
title_short An invitation to Alexandrov geometry: CAT(0) spaces
title_sort invitation to alexandrov geometry: cat(0) spaces
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-030-05312-3
http://cds.cern.ch/record/2678343
work_keys_str_mv AT alexanderstephanie aninvitationtoalexandrovgeometrycat0spaces
AT kapovitchvitali aninvitationtoalexandrovgeometrycat0spaces
AT petruninanton aninvitationtoalexandrovgeometrycat0spaces
AT alexanderstephanie invitationtoalexandrovgeometrycat0spaces
AT kapovitchvitali invitationtoalexandrovgeometrycat0spaces
AT petruninanton invitationtoalexandrovgeometrycat0spaces