Cargando…
An invitation to Alexandrov geometry: CAT(0) spaces
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-05312-3 http://cds.cern.ch/record/2678343 |
_version_ | 1780962841585516544 |
---|---|
author | Alexander, Stephanie Kapovitch, Vitali Petrunin, Anton |
author_facet | Alexander, Stephanie Kapovitch, Vitali Petrunin, Anton |
author_sort | Alexander, Stephanie |
collection | CERN |
description | Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds. |
id | cern-2678343 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
publisher | Springer |
record_format | invenio |
spelling | cern-26783432021-04-21T18:23:58Zdoi:10.1007/978-3-030-05312-3http://cds.cern.ch/record/2678343engAlexander, StephanieKapovitch, VitaliPetrunin, AntonAn invitation to Alexandrov geometry: CAT(0) spacesMathematical Physics and MathematicsAimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.Springeroai:cds.cern.ch:26783432019 |
spellingShingle | Mathematical Physics and Mathematics Alexander, Stephanie Kapovitch, Vitali Petrunin, Anton An invitation to Alexandrov geometry: CAT(0) spaces |
title | An invitation to Alexandrov geometry: CAT(0) spaces |
title_full | An invitation to Alexandrov geometry: CAT(0) spaces |
title_fullStr | An invitation to Alexandrov geometry: CAT(0) spaces |
title_full_unstemmed | An invitation to Alexandrov geometry: CAT(0) spaces |
title_short | An invitation to Alexandrov geometry: CAT(0) spaces |
title_sort | invitation to alexandrov geometry: cat(0) spaces |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-030-05312-3 http://cds.cern.ch/record/2678343 |
work_keys_str_mv | AT alexanderstephanie aninvitationtoalexandrovgeometrycat0spaces AT kapovitchvitali aninvitationtoalexandrovgeometrycat0spaces AT petruninanton aninvitationtoalexandrovgeometrycat0spaces AT alexanderstephanie invitationtoalexandrovgeometrycat0spaces AT kapovitchvitali invitationtoalexandrovgeometrycat0spaces AT petruninanton invitationtoalexandrovgeometrycat0spaces |