Cargando…
Real-time discrimination of photon pairs using machine learning at the LHC
ALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently se...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.21468/SciPostPhys.7.5.062 http://cds.cern.ch/record/2679671 |
Sumario: | ALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently select such photon pairs. A fast neural network topology, implemented in the LHCb real-time selection framework achieves high efficiency across a mass range of $4-20$ GeV$/c^{2}$. We discuss implications and future prospects for the LHCb experiment. |
---|