Cargando…
Real-time discrimination of photon pairs using machine learning at the LHC
ALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently se...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.21468/SciPostPhys.7.5.062 http://cds.cern.ch/record/2679671 |
_version_ | 1780962898048188416 |
---|---|
author | Benson, Sean Casais Vidal, Adrián Cid Vidal, Xabier Puig Navarro, Albert |
author_facet | Benson, Sean Casais Vidal, Adrián Cid Vidal, Xabier Puig Navarro, Albert |
author_sort | Benson, Sean |
collection | CERN |
description | ALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently select such photon pairs. A fast neural network topology, implemented in the LHCb real-time selection framework achieves high efficiency across a mass range of $4-20$ GeV$/c^{2}$. We discuss implications and future prospects for the LHCb experiment. |
id | cern-2679671 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | cern-26796712023-03-14T17:23:32Zdoi:10.21468/SciPostPhys.7.5.062http://cds.cern.ch/record/2679671engBenson, SeanCasais Vidal, AdriánCid Vidal, XabierPuig Navarro, AlbertReal-time discrimination of photon pairs using machine learning at the LHChep-exParticle Physics - ExperimentALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently select such photon pairs. A fast neural network topology, implemented in the LHCb real-time selection framework achieves high efficiency across a mass range of $4-20$ GeV$/c^{2}$. We discuss implications and future prospects for the LHCb experiment.arXiv:1906.09058CERN-LHCb-DP-2019-004oai:cds.cern.ch:26796712019-06-21 |
spellingShingle | hep-ex Particle Physics - Experiment Benson, Sean Casais Vidal, Adrián Cid Vidal, Xabier Puig Navarro, Albert Real-time discrimination of photon pairs using machine learning at the LHC |
title | Real-time discrimination of photon pairs using machine learning at the LHC |
title_full | Real-time discrimination of photon pairs using machine learning at the LHC |
title_fullStr | Real-time discrimination of photon pairs using machine learning at the LHC |
title_full_unstemmed | Real-time discrimination of photon pairs using machine learning at the LHC |
title_short | Real-time discrimination of photon pairs using machine learning at the LHC |
title_sort | real-time discrimination of photon pairs using machine learning at the lhc |
topic | hep-ex Particle Physics - Experiment |
url | https://dx.doi.org/10.21468/SciPostPhys.7.5.062 http://cds.cern.ch/record/2679671 |
work_keys_str_mv | AT bensonsean realtimediscriminationofphotonpairsusingmachinelearningatthelhc AT casaisvidaladrian realtimediscriminationofphotonpairsusingmachinelearningatthelhc AT cidvidalxabier realtimediscriminationofphotonpairsusingmachinelearningatthelhc AT puignavarroalbert realtimediscriminationofphotonpairsusingmachinelearningatthelhc |