Cargando…

Real-time discrimination of photon pairs using machine learning at the LHC

ALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently se...

Descripción completa

Detalles Bibliográficos
Autores principales: Benson, Sean, Casais Vidal, Adrián, Cid Vidal, Xabier, Puig Navarro, Albert
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.21468/SciPostPhys.7.5.062
http://cds.cern.ch/record/2679671
_version_ 1780962898048188416
author Benson, Sean
Casais Vidal, Adrián
Cid Vidal, Xabier
Puig Navarro, Albert
author_facet Benson, Sean
Casais Vidal, Adrián
Cid Vidal, Xabier
Puig Navarro, Albert
author_sort Benson, Sean
collection CERN
description ALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently select such photon pairs. A fast neural network topology, implemented in the LHCb real-time selection framework achieves high efficiency across a mass range of $4-20$ GeV$/c^{2}$. We discuss implications and future prospects for the LHCb experiment.
id cern-2679671
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26796712023-03-14T17:23:32Zdoi:10.21468/SciPostPhys.7.5.062http://cds.cern.ch/record/2679671engBenson, SeanCasais Vidal, AdriánCid Vidal, XabierPuig Navarro, AlbertReal-time discrimination of photon pairs using machine learning at the LHChep-exParticle Physics - ExperimentALP-mediated decays and other as-yet unobserved $B$ decays to di-photon final states are a challenge to select in hadron collider environments due to the large backgrounds that come directly from the $pp$ collision. We present the strategy implemented by the LHCb experiment in 2018 to efficiently select such photon pairs. A fast neural network topology, implemented in the LHCb real-time selection framework achieves high efficiency across a mass range of $4-20$ GeV$/c^{2}$. We discuss implications and future prospects for the LHCb experiment.arXiv:1906.09058CERN-LHCb-DP-2019-004oai:cds.cern.ch:26796712019-06-21
spellingShingle hep-ex
Particle Physics - Experiment
Benson, Sean
Casais Vidal, Adrián
Cid Vidal, Xabier
Puig Navarro, Albert
Real-time discrimination of photon pairs using machine learning at the LHC
title Real-time discrimination of photon pairs using machine learning at the LHC
title_full Real-time discrimination of photon pairs using machine learning at the LHC
title_fullStr Real-time discrimination of photon pairs using machine learning at the LHC
title_full_unstemmed Real-time discrimination of photon pairs using machine learning at the LHC
title_short Real-time discrimination of photon pairs using machine learning at the LHC
title_sort real-time discrimination of photon pairs using machine learning at the lhc
topic hep-ex
Particle Physics - Experiment
url https://dx.doi.org/10.21468/SciPostPhys.7.5.062
http://cds.cern.ch/record/2679671
work_keys_str_mv AT bensonsean realtimediscriminationofphotonpairsusingmachinelearningatthelhc
AT casaisvidaladrian realtimediscriminationofphotonpairsusingmachinelearningatthelhc
AT cidvidalxabier realtimediscriminationofphotonpairsusingmachinelearningatthelhc
AT puignavarroalbert realtimediscriminationofphotonpairsusingmachinelearningatthelhc