Cargando…
Pytorch deep learning hands-on: apply modern AI techniques with CNNS, RNNS, GANs, reinforcement learning, and more
Implement every major architecture of deep learning in PyTorch. Starting with simple neural networks, it covers PyTorch for computer vision (CNN), natural language (RNN), GANs, and reinforcement learning. It covers deep learning workflows, migrating models to TorchScript, and deploying to efficient...
Autores principales: | Thomas, Sherin, Passi, Sudhanshu |
---|---|
Lenguaje: | eng |
Publicado: |
Packt Publishing
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2680080 |
Ejemplares similares
-
Learn computer vision using OpenCV: with deep learning CNNs and RNNs
por: Gollapudi, Sunila
Publicado: (2019) -
Deep learning with PyTorch: a practical approach to building neural network models using PyTorch
por: Subramanian, Vishnu
Publicado: (2018) -
Hands-on reinforcement learning with Python: master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
por: Ravichandiran, Sudharsan
Publicado: (2018) -
Programming PyTorch for deep learning: creating and deploying deep learning applications
por: Pointer, Ian
Publicado: (2019) -
Advanced deep learning with Python: design and implement advanced next-generation AI solutions using TensorFlow and PyTorch
por: Vasilev, Ivan
Publicado: (2019)