Cargando…

Non-Minimal M-flation

<!--HTML-->We show how in a matrix inflationary model, in which there is a non-minimal coupling between the matrix inflatons and gravity and we call non-$\mathbb{M}$-flation for brevity, some of the disadvantages of the minimal model, $ \mathbb{M}$-flation, can be avoided. In particular, the n...

Descripción completa

Detalles Bibliográficos
Autor principal: Ashoorioon, Amjad
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:http://cds.cern.ch/record/2681060
_version_ 1780963007629623296
author Ashoorioon, Amjad
author_facet Ashoorioon, Amjad
author_sort Ashoorioon, Amjad
collection CERN
description <!--HTML-->We show how in a matrix inflationary model, in which there is a non-minimal coupling between the matrix inflatons and gravity and we call non-$\mathbb{M}$-flation for brevity, some of the disadvantages of the minimal model, $ \mathbb{M}$-flation, can be avoided. In particular, the number of D3 branes can be reduced to $\leq \mathcal{O}(10^2)$ which can alleviate the ``potential'' backreaction problem of large number of D3 branes on the background geometry in the minimal model. This is achieved by values of non-minimal coupling of order few hundred, which is much smaller than what is required in Higgs Inflation. The prediction of the model in the symmetry breaking part of the potential $\phi>\mu$, which is a local attractor and can support eternal inflation, consequently becomes compatible with the latest PLANCK result. Contrary to minimal model, in which the spectator fields failed to deplete the energy of the inflation at the end of inflation around the symmetry-breaking vacuum, in non-MM-flation, they can successfully reheat the universe. We also comment on how this non-minimal coupling can arise in the string theory setup.
id cern-2681060
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26810602022-11-02T22:21:41Zhttp://cds.cern.ch/record/2681060engAshoorioon, AmjadNon-Minimal M-flationString Phenomenology 2019Conferences & Workshops<!--HTML-->We show how in a matrix inflationary model, in which there is a non-minimal coupling between the matrix inflatons and gravity and we call non-$\mathbb{M}$-flation for brevity, some of the disadvantages of the minimal model, $ \mathbb{M}$-flation, can be avoided. In particular, the number of D3 branes can be reduced to $\leq \mathcal{O}(10^2)$ which can alleviate the ``potential'' backreaction problem of large number of D3 branes on the background geometry in the minimal model. This is achieved by values of non-minimal coupling of order few hundred, which is much smaller than what is required in Higgs Inflation. The prediction of the model in the symmetry breaking part of the potential $\phi>\mu$, which is a local attractor and can support eternal inflation, consequently becomes compatible with the latest PLANCK result. Contrary to minimal model, in which the spectator fields failed to deplete the energy of the inflation at the end of inflation around the symmetry-breaking vacuum, in non-MM-flation, they can successfully reheat the universe. We also comment on how this non-minimal coupling can arise in the string theory setup.oai:cds.cern.ch:26810602019
spellingShingle Conferences & Workshops
Ashoorioon, Amjad
Non-Minimal M-flation
title Non-Minimal M-flation
title_full Non-Minimal M-flation
title_fullStr Non-Minimal M-flation
title_full_unstemmed Non-Minimal M-flation
title_short Non-Minimal M-flation
title_sort non-minimal m-flation
topic Conferences & Workshops
url http://cds.cern.ch/record/2681060
work_keys_str_mv AT ashoorioonamjad nonminimalmflation
AT ashoorioonamjad stringphenomenology2019