Cargando…

An analytic solution for the equal-mass banana graph

We present fully analytic results for all master integrals for the three-loop banana graph with four equal and non-zero masses. The results are remarkably simple and all integrals are expressed as linear combinations of iterated integrals of modular forms of uniform weight for the same congruence su...

Descripción completa

Detalles Bibliográficos
Autores principales: Broedel, Johannes, Duhr, Claude, Dulat, Falko, Marzucca, Robin, Penante, Brenda, Tancredi, Lorenzo
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP09(2019)112
http://cds.cern.ch/record/2682070
_version_ 1780963077854855168
author Broedel, Johannes
Duhr, Claude
Dulat, Falko
Marzucca, Robin
Penante, Brenda
Tancredi, Lorenzo
author_facet Broedel, Johannes
Duhr, Claude
Dulat, Falko
Marzucca, Robin
Penante, Brenda
Tancredi, Lorenzo
author_sort Broedel, Johannes
collection CERN
description We present fully analytic results for all master integrals for the three-loop banana graph with four equal and non-zero masses. The results are remarkably simple and all integrals are expressed as linear combinations of iterated integrals of modular forms of uniform weight for the same congruence subgroup as for the two-loop equal-mass sunrise graph. We also show how to write the results in terms of elliptic polylogarithms evaluated at rational points.
id cern-2682070
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26820702023-10-04T06:37:50Zdoi:10.1007/JHEP09(2019)112http://cds.cern.ch/record/2682070engBroedel, JohannesDuhr, ClaudeDulat, FalkoMarzucca, RobinPenante, BrendaTancredi, LorenzoAn analytic solution for the equal-mass banana graphhep-phParticle Physics - Phenomenologyhep-thParticle Physics - TheoryWe present fully analytic results for all master integrals for the three-loop banana graph with four equal and non-zero masses. The results are remarkably simple and all integrals are expressed as linear combinations of iterated integrals of modular forms of uniform weight for the same congruence subgroup as for the two-loop equal-mass sunrise graph. We also show how to write the results in terms of elliptic polylogarithms evaluated at rational points.arXiv:1907.03787CP3-19-34CERN-TH-2019-105HU-Mathematik-2019-04HU-EP-19/20, SLAC-PUB-17453HU-EP-19/20, SLAC-PUB-17453oai:cds.cern.ch:26820702019-07-08
spellingShingle hep-ph
Particle Physics - Phenomenology
hep-th
Particle Physics - Theory
Broedel, Johannes
Duhr, Claude
Dulat, Falko
Marzucca, Robin
Penante, Brenda
Tancredi, Lorenzo
An analytic solution for the equal-mass banana graph
title An analytic solution for the equal-mass banana graph
title_full An analytic solution for the equal-mass banana graph
title_fullStr An analytic solution for the equal-mass banana graph
title_full_unstemmed An analytic solution for the equal-mass banana graph
title_short An analytic solution for the equal-mass banana graph
title_sort analytic solution for the equal-mass banana graph
topic hep-ph
Particle Physics - Phenomenology
hep-th
Particle Physics - Theory
url https://dx.doi.org/10.1007/JHEP09(2019)112
http://cds.cern.ch/record/2682070
work_keys_str_mv AT broedeljohannes ananalyticsolutionfortheequalmassbananagraph
AT duhrclaude ananalyticsolutionfortheequalmassbananagraph
AT dulatfalko ananalyticsolutionfortheequalmassbananagraph
AT marzuccarobin ananalyticsolutionfortheequalmassbananagraph
AT penantebrenda ananalyticsolutionfortheequalmassbananagraph
AT tancredilorenzo ananalyticsolutionfortheequalmassbananagraph
AT broedeljohannes analyticsolutionfortheequalmassbananagraph
AT duhrclaude analyticsolutionfortheequalmassbananagraph
AT dulatfalko analyticsolutionfortheequalmassbananagraph
AT marzuccarobin analyticsolutionfortheequalmassbananagraph
AT penantebrenda analyticsolutionfortheequalmassbananagraph
AT tancredilorenzo analyticsolutionfortheequalmassbananagraph