Cargando…
Developing Jet Vertex Tagger in larger pT range using neural network
The Jet Vertex Tagger (JVT) is designed for separating Hard-Scattering Jets from Pileup Jets, using machine learning techniques. Originally, a KNN-based algorithm was trained for the classification of the jet with in a pT range (20-50 GeV). The objective of this study is to extend it to a larger pT...
Autor principal: | Xiang, Jianhuan |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2682188 |
Ejemplares similares
-
Performance of jet substructure taggers in ATLAS
por: Schramm, Steven
Publicado: (2020) -
A deep neural network-based tagger to search for new long-lived particle states decaying to jets
por: CMS Collaboration
Publicado: (2019) -
A new tagger for the charge identification of b-jets
por: The ATLAS collaboration
Publicado: (2015) -
Development of a new Soft Muon Tagger for the identification of $b$-jets in ATLAS
por: Sciandra, Andrea
Publicado: (2017) -
Performance of $W$/$Z$ taggers using UFO jets in ATLAS
por: The ATLAS collaboration
Publicado: (2021)