Cargando…
Deep Reinforcement Learning and the Type IIA Landscape
<!--HTML-->An artificial intelligence agent known as an asynchronous advantage actor-critic is utilized to explore type IIA compactifications with intersecting D6-branes. By reinforcement learning, the agent's performance in satisfying string consistency conditions, and finding Standard M...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2682616 |
Sumario: | <!--HTML-->An artificial intelligence agent known as an asynchronous advantage actor-critic is utilized to explore type IIA compactifications with intersecting D6-branes. By reinforcement learning, the agent's performance in satisfying string consistency conditions, and finding Standard Model like configurations, is significantly improved. In one case, we demonstrate that the agent learns a human-derived strategy for finding consistent string models. In another case, where no human-derived strategy exists, the agent learns a genuinely new strategy that achieves the same goal twice as efficiently per unit time. |
---|