Cargando…

Architecture, mathematics and structure

The title of this issue of the Nexus Network Journal, "Architecture, Mathematics and Structure," is deliberately ambiguous. At first glance, it might seem to indicate the relationship between what buildings look like and how they stand up. This is indeed one aspect of what we are concerned...

Descripción completa

Detalles Bibliográficos
Autor principal: Williams, Kim
Lenguaje:eng
Publicado: Springer 2009
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-7643-8976-5
http://cds.cern.ch/record/2683081
_version_ 1780963206644105216
author Williams, Kim
author_facet Williams, Kim
author_sort Williams, Kim
collection CERN
description The title of this issue of the Nexus Network Journal, "Architecture, Mathematics and Structure," is deliberately ambiguous. At first glance, it might seem to indicate the relationship between what buildings look like and how they stand up. This is indeed one aspect of what we are concerned with here. But on a deeper level, the fundamental concept of structure is what connects architecture to mathematics. Both architecture and mathematics are highly structured formal systems expressed through a symbolic language. For architecture, the generating structure might be geometrical, musical, modular, or fractal. Once we understand the nature of the structure underlying the design, we are able to "read" the meaning inherent in the architectural forms. The papers in this issue all explore themes of structure in different ways.
id cern-2683081
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
publisher Springer
record_format invenio
spelling cern-26830812021-04-21T18:21:37Zdoi:10.1007/978-3-7643-8976-5http://cds.cern.ch/record/2683081engWilliams, KimArchitecture, mathematics and structureMathematical Physics and MathematicsThe title of this issue of the Nexus Network Journal, "Architecture, Mathematics and Structure," is deliberately ambiguous. At first glance, it might seem to indicate the relationship between what buildings look like and how they stand up. This is indeed one aspect of what we are concerned with here. But on a deeper level, the fundamental concept of structure is what connects architecture to mathematics. Both architecture and mathematics are highly structured formal systems expressed through a symbolic language. For architecture, the generating structure might be geometrical, musical, modular, or fractal. Once we understand the nature of the structure underlying the design, we are able to "read" the meaning inherent in the architectural forms. The papers in this issue all explore themes of structure in different ways.Springeroai:cds.cern.ch:26830812009
spellingShingle Mathematical Physics and Mathematics
Williams, Kim
Architecture, mathematics and structure
title Architecture, mathematics and structure
title_full Architecture, mathematics and structure
title_fullStr Architecture, mathematics and structure
title_full_unstemmed Architecture, mathematics and structure
title_short Architecture, mathematics and structure
title_sort architecture, mathematics and structure
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-7643-8976-5
http://cds.cern.ch/record/2683081
work_keys_str_mv AT williamskim architecturemathematicsandstructure