Cargando…
Machine learning-based identification of highly Lorentz-boosted hadronically decaying particles at the CMS experiment
In this note, machine learning (ML) based techniques are presented to identify and classify hadronic decays of highly Lorentz-boosted W/Z/H bosons and top quarks, to be used by the CMS Collaboration. The techniques presented include the Energy Correlation Functions tagger, the Boosted Event Shape Ta...
Autor principal: | CMS Collaboration |
---|---|
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2683870 |
Ejemplares similares
-
Search for $\mathrm{W}\gamma$ resonances using hadronic decays of Lorentz-boosted $\mathrm{W}$ bosons in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$
por: CMS Collaboration
Publicado: (2021) -
Measurement of the highly Lorentz-boosted Higgs boson cross section in the decay mode of a pair of $\tau$ leptons in proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$
por: CMS Collaboration
Publicado: (2023) -
Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques
por: CMS Collaboration
Publicado: (2020) -
Identification of boosted hadronically decaying particles with jet substructure in ATLAS Run-2
por: Veatch, Jason
Publicado: (2018) -
Incluseive Search for a Lorentz-Boosted Higgs Boson Decaying into Bottom Quarks
por: Kwok, Ka Hei Martin
Publicado: (2020)