Cargando…
Convolutional Neural Networks with Event Images for Pileup Mitigation with the ATLAS Detector
The addition of multiple, nearly simultaneous $pp$ collisions to hard-scatter collisions (pileup) is a significant challenge for most physics analyses at the LHC. Many techniques have been proposed to mitigate the impact of pileup on jets and other reconstructed objects. This study investigates the...
Autor principal: | The ATLAS collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2684070 |
Ejemplares similares
-
Convolutional neural networks with event images for pileup mitigation
por: Brickwedde, Bernard, et al.
Publicado: (2020) -
Pileup Mitigation
por: Roloff, Jennifer, et al.
Publicado: (2017) -
Pileup Mitigation Techniques
por: Klein, Matthew Henry
Publicado: (2016) -
Luminosity determination for low-pileup datasets at $\sqrt{s}=5$ and 13 TeV using the ATLAS detector at the LHC
por: The ATLAS collaboration
Publicado: (2020) -
Pileup mitigation at CMS in 13 TeV data
por: CMS Collaboration
Publicado: (2019)