Cargando…

Targeting Natural Supersymmetry with Top Quarks

This thesis describes a search for natural supersymmetry via the production of light top squarks (stops) with the ATLAS experiment, using 13 TeV proton-proton collision data delivered by the Large Hadron Collider. A range of models is considered where the stop may decay to top quarks, b jets, and a...

Descripción completa

Detalles Bibliográficos
Autor principal: Herwig, Theodor Christian
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:http://cds.cern.ch/record/2684097
_version_ 1780963309297598464
author Herwig, Theodor Christian
author_facet Herwig, Theodor Christian
author_sort Herwig, Theodor Christian
collection CERN
description This thesis describes a search for natural supersymmetry via the production of light top squarks (stops) with the ATLAS experiment, using 13 TeV proton-proton collision data delivered by the Large Hadron Collider. A range of models is considered where the stop may decay to top quarks, b jets, and a variety of other supersymmetric particles. Stop masses as large as 950 GeV are excluded at 95% confidence level when decaying to a top quark and massless lightest supersymmetric particle (LSP). In scenarios where the LSP is a Higgsino, exclusions vary from 600 to 900 GeV depending on the relative stop branching fractions and Higgsino mass splitting. The impact of precision top-quark measurements on future searches is also discussed, including a measurement of quantum interference in top-quark production and measurement of the top-quark width. A differential mass distribution is measured in events with two charged leptons and two b-tagged jets that is sensitive to the interference property. The measurement is unfolded to particle level and the data are compared to state-of-the-art Monte Carlo predictions, which are found to describe the data well. A new technique is proposed to utilize this dataset to extract a value of the top-quark width, inspired by recent efforts to measure the Higgs boson width using off-shell decays. A value of 1.28$\pm$0.27(exp.)$\pm$0.15(theory) GeV is extracted from the ATLAS data, in good agreement with the standard model prediction. Finally, a new hardware tracking system is described for use in the upgraded ATLAS Trigger system for the high-luminosity run of the LHC.
id cern-2684097
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26840972019-09-30T06:29:59Zhttp://cds.cern.ch/record/2684097engHerwig, Theodor ChristianTargeting Natural Supersymmetry with Top QuarksParticle Physics - ExperimentDetectors and Experimental TechniquesThis thesis describes a search for natural supersymmetry via the production of light top squarks (stops) with the ATLAS experiment, using 13 TeV proton-proton collision data delivered by the Large Hadron Collider. A range of models is considered where the stop may decay to top quarks, b jets, and a variety of other supersymmetric particles. Stop masses as large as 950 GeV are excluded at 95% confidence level when decaying to a top quark and massless lightest supersymmetric particle (LSP). In scenarios where the LSP is a Higgsino, exclusions vary from 600 to 900 GeV depending on the relative stop branching fractions and Higgsino mass splitting. The impact of precision top-quark measurements on future searches is also discussed, including a measurement of quantum interference in top-quark production and measurement of the top-quark width. A differential mass distribution is measured in events with two charged leptons and two b-tagged jets that is sensitive to the interference property. The measurement is unfolded to particle level and the data are compared to state-of-the-art Monte Carlo predictions, which are found to describe the data well. A new technique is proposed to utilize this dataset to extract a value of the top-quark width, inspired by recent efforts to measure the Higgs boson width using off-shell decays. A value of 1.28$\pm$0.27(exp.)$\pm$0.15(theory) GeV is extracted from the ATLAS data, in good agreement with the standard model prediction. Finally, a new hardware tracking system is described for use in the upgraded ATLAS Trigger system for the high-luminosity run of the LHC.CERN-THESIS-2019-092oai:cds.cern.ch:26840972019-07-26T13:39:46Z
spellingShingle Particle Physics - Experiment
Detectors and Experimental Techniques
Herwig, Theodor Christian
Targeting Natural Supersymmetry with Top Quarks
title Targeting Natural Supersymmetry with Top Quarks
title_full Targeting Natural Supersymmetry with Top Quarks
title_fullStr Targeting Natural Supersymmetry with Top Quarks
title_full_unstemmed Targeting Natural Supersymmetry with Top Quarks
title_short Targeting Natural Supersymmetry with Top Quarks
title_sort targeting natural supersymmetry with top quarks
topic Particle Physics - Experiment
Detectors and Experimental Techniques
url http://cds.cern.ch/record/2684097
work_keys_str_mv AT herwigtheodorchristian targetingnaturalsupersymmetrywithtopquarks